抽屉原理教学设计

时间:2025-08-13 09:29:09
抽屉原理教学设计15篇

抽屉原理教学设计15篇

作为一名教师,常常要写一份优秀的教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。那么写教学设计需要注意哪些问题呢?下面是小编为大家收集的抽屉原理教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

抽屉原理教学设计1

【教学内容】

《义务教育课程标准实验教科书·数学》六年级下册。

【教材分析】

让学生初步了解简单“抽屉原理”,教材借助把4枝铅笔放进3个文具盒中的操作情景,介绍了较简单的“抽屉原理”,通过用“抽屉原理”解决简单的实际问题,初步感受数学的魅力。主要培养学生的思考和推理能力,让学生初步经历“数学原理”的过程,提高学生数学应用意识。

【学情分析】

教材借助把4枝铅笔放进3个文具盒中的操作情景,介绍了较简单的“抽屉原理”。学生在操作实物的过程中可以发现一个现象:不管怎么放,总有一个文具盒里至少放进2枝铅笔,从而产生疑问,激起寻求答案的欲望。为了解释这一现象,教材呈现了枚举。

【教学目标】

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“抽屉原理”的灵活应用感受数学的魅力。

【教学重点】

经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

【教学难点】

理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

【教具、学具准备】

每组都有3个文具盒和4枝铅笔。

【教学过程】

一、谈话导入

教师:同学们,你们在电脑上玩过“电脑算命”吗?“电脑算命”看起来很深奥,只要报出你的出生的年、月、日和性别,一按键,屏幕上就会出现所谓性格、命运、财运等。通过今天的学习,我们掌握了“抽屉原理”之后,你就不难证明这种“电脑算命”是非常可笑和荒唐的,是不能信的鬼把戏。

板书:抽屉原理

教师:通过学习,你想解决那些问题?

根据学生回答,教师把学生提出的问题归结为:“抽屉原理”是怎样的.?这里的“抽屉”是指什么?运用“抽屉原理”能解决那些问题?怎样运用“抽屉原理”解决实际问题?

二、通过操作,探究新知

(一)认识“抽屉原理”

出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法?

师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0)(2,1)

师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。3支笔放进2个盒子里呢?

生:不管怎么放,总有一个盒子里至少有2枝笔?

师:是这样吗?谁还有这样的发现,再说一说。

师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导)

师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。

(4,0,0)(3,1,0) (2,2,0)(2,1,1),师:还有不同的放法吗?

生:没有了。

师:你能发现什么?

生:不管怎么放,总有一个盒子里至少有2枝铅笔。

师:“总有”是什么意思?

生:一定有

师:“至少”有2枝什么意思?

生:不少于两只,可能是2枝,也可能是多于2枝?

师:就是不能少于2枝。(通过操作让学生充分体验感受)

师:把3枝笔放进2个盒子里,和把4枝笔饭放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?

学生思考——组内交流——汇报

师:哪一组同学能把你们的想法汇报一下?

组1生:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。

师:你能结合操作给大家演示一遍吗?(学生操作演示)

师:同学们自己说说看,同位之间边演示边说一说好吗?

师:这种分法,实际就是先怎么分的?

生众:平均分

师:为什么要先平均分?(组织学生讨论)

生1:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。

生2:这样分,只分一次就能确定总有一个盒子至少有几枝笔了?

师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说)

师:哪位同学能把你的想法汇报一下,生:(一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:把6枝笔放进5个盒子里呢?还用摆吗?

生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:把7枝笔放进6个盒子里呢?

把8枝笔放进7个盒子里呢?

把9枝笔放进8个盒子里呢?……

你发现什么?

生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。

师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。

(二)探究新知

1.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

(留给学生思考的空间,师巡视了解各种情况)

2.学生汇报。

生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。

板书:5本2个2本……余1本(总有一个抽屉里至有3本书)

7本2个3本……余1本(总有一个抽屉里至有4本书)

9本2个4本……余1本(总有一个抽屉里至有5本书)

师:2本、3本、4本是怎么得到的?生答完成除法算式。

5÷2=2本……1本(商加1)

7÷2=3本……1本(商加1)

9÷2=4本……1本(商加1)

师:观察板书你能发现什么?

生1:“总有一个抽屉里的至 ……此处隐藏26026个字……

(二)揭示目标

理解并掌握解决鸽巢问题的解答方法。

二、 自主学习(8分)

1、看书68页,阅读例1:把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?

(1)理解“总有”和“至少”的意思。

(2)理解4种放法。

2、全班同学交流思维的过程和结果。

3、跟踪练习。

68页做一做:5只鸽子飞回3个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?

(1)说出想法。

如果每个鸽舍只飞进1只鸽子,最多飞回3只鸽子,剩下2只鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。所以至少有2只鸽子飞进同一个鸽舍。

(2)尝试分析有几种情况。

(3)说一说你有什么体会。

三、合作交流(8)

1、出示例2

把7本书放进3个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?

(1)合作交流有几种放法。

不难得出,总有一个抽屉至少放进3本。

(2)指名说一说思维过程。

如果每个抽屉放2本,放了6本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。

2、如果一共有8本书会怎样呢10本呢?

3、你能用算式表示以上过程吗?你有什么发现?

7÷3=2……1 (至少放3本)

8÷3=2……2 (至少放4本)

10÷3=3……1 (至少放5本)

4、做一做

11只鸽子飞回4个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?

四、质疑探究(5分)

1、鸽巢问题怎样求?

小结:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。

2、做一做。

69页做一做2题。

五、小结检测(10)

(一)小结

鸽巢问题的解答方法是什么?

物体的数量大于抽屉的数量,总有一个抽屉里至少放进(商+1)个物体。

(二)检测

1、填空

(1)7只鸽子飞进5个鸽舍,至少有( )只鸽子要飞进同伴的鸽舍里。

(2)有9本书,要放进2个抽屉里,必须有一个抽屉至少要放( )本书。

(3)四年级两个班共有73名学生,这两个班的学生至少有( )人是同一月出生的。

(4)任意给出3个不同的自然数,其中一定有2个数的和是( )数。

2、选择

(1)5个人逛商店共花了301元钱,每人花的'钱数都是整数,其中至少有一人花的钱数不低于( )元。 a、60 b、61 c、62 d、59

(2)3种商品的总价是13元,每种商品的价格都是整数,至少有一种商品的价格不低于( )元。 a、3 b、4 c、5 d、无法确定

3、幼儿园老师准备把15本图画书分给14个小朋友,结果是什么?

六、作业 (6分)

完成课本练习十二第2、4题。

板书

抽屉原理

物体的数量大于抽屉的数量,总有一个抽屉至少放进(商+1)物体。

抽屉原理教学设计15

教学目标:

1.使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。

2.体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

教学重点:抽取问题。

教学难点:理解抽取问题的基本原理。

教学过程:

一、创设情境,复习旧知

1、出示复习题:

师:老师这儿有一个问题,不知道哪位同学能帮助解答一下?

2、课件出示:把3个苹果放进2个抽屉里,总有一个抽屉至少放2个苹果,为什么?

3、学生自由回答。

二、教学例2

1、出示:盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,最少要摸出几个球?

(1)组织学生读题,理解题意。

教师:你们能猜出结果吗?

组织学生猜一猜,并相互交流。

指名学生汇报。

学生汇报时可能会答出:只摸4个球就可以了,至少要摸出5个球……

教师:能验证吗?

教师拿出准备好的红球及蓝球,组织学生到讲台前来动手摸一摸,验证汇报结果的正确性。

(2)教师:刚才我们通过验证的方法得出了结论,联系前面所学的知识,这是一个什么问题?

2、组织学生议一议,并相互交流。再指名学生汇报。

教师:上面的.问题是一个抽屉问题,请同学们找一找:“抽屉”是什么?“抽屉”有几个?

组织学生议一议,并相互交流。

指名学生汇报,使学生明确:抽屉就是颜色数。(板书)

教师:能用例1的知识来解答吗?

组织学生议一议,并相互交流。

指名学生汇报。

使学生明确:只要分的物体比抽屉多,就能保证总有一个抽屉至少放荡2个球,因此要保证摸出两个同色的球,摸出球的数量至少要比颜色的种数多一。

(3)组织学生对例题的解答过程议一议,相互交流,理解解决问题的方法。

学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。

3、做一做

第1题。

1、独立思考,判断正误。

2、同学交流,说明理由。其中“370名学生中一定有两人的生日是同一天”与例1中的“抽屉原理”是一类,“49名学生中一定有5人的出生月份相同”则与例2的类型相同。教师要引导学生把“生日问题”转化成“抽屉问题”。因为一年中最多有366天,如果把这366天看作366个抽屉,把370个学生放进366个抽屉,人数大于抽屉数,因此总有一个抽屉里至少有两个人,即他们的生日是同一天。而一年中有12个月,如果把这12个月看作12个抽屉,把49个学生放进12个抽屉,49÷12=4……1,因此,总有一个抽屉里至少有5(即4+1)个人,也就是他们的生日在同一个月。

三巩固练习

完成课文练习十二第1、3题。

四、总结评价

1、师:这节课你有哪些收获或感想?

五、布置作业

1、做一做。把红、黄、蓝三种颜色的小棒各10根混在一起。如果让你闭上眼睛,每次最少拿出几根才能保证一定有2根同色的小棒?保证有2对同色的小棒呢?

2、试一试。给下面每个格子涂上红色或蓝色。观察每一列,你有什么发现?如果只涂两列的话,结论有什么变化呢?

3、拓展练习(选做)

(1)任意给出5个非0的自然数。有人说一定能找到3个数,让这3个数的和是3的倍数。你信不信?

(2)把1~8这8个数任意围成一个圆圈。在这个圈上,一定有3个相邻的数之和大于13。你知道其中的奥秘吗?

《抽屉原理教学设计15篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式